Consider $\frac{dX}{dt} = AX(t)$ where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ with a, b, c, and d real numbers. Let λ_1 and λ_2 be the eignevalues of A with the corresponding eigenvectors V_1 and V_2 , respectively.

- 1. λ_1 and λ_2 are real-valued and $\lambda_1 \neq \lambda_2$. The general solution is $X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$, where c_1 and c_2 are constants.
- 2. $\lambda = \lambda_1 = \lambda_2$.
 - (a) V_1 and V_2 are linearly independent. The general solution is $X(t) = e^{\lambda t} V$, where V is any vector in \Re^2 .
 - (b) V_1 and V_2 are not linearly independent. Let V be V_1 or V_2 and let U be a solution of the matrix equation $(A \lambda I)U = V$. The general solution is $X(t) = c_1 e^{\lambda t} V + c_2 e^{\lambda t} (tV + U)$, where c_1 and c_2 are constants.
- 3. λ_1 and λ_2 are complex-valued: λ_1 , $\lambda_2 = \alpha \pm i\beta$ with $\beta \neq 0$. The general solution is $X(t) = c_1 \operatorname{Re}(e^{\lambda_1 t} V_1) + c_2 \operatorname{Im}(e^{\lambda_1 t} V_1)$, where $\operatorname{Re}(*)$ and $\operatorname{Im}(*)$ are the real and imaginary parts of *, respectively, and c_1 and c_2 are constants.