Solutions of Linear Planar Systems

Consider $\frac{d X}{d t}=A X(t)$ where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $X(t)=\binom{x(t)}{y(t)}$ with a, b, c, and d real numbers. Let λ_{1} and λ_{2} be the eignevalues of A with the corresponding eigenvectors V_{1} and V_{2}, respectively.

1. λ_{1} and λ_{2} are real-valued and $\lambda_{1} \neq \lambda_{2}$. The general solution is $X(t)=c_{1} e^{\lambda_{1} t} V_{1}+$ $c_{2} e^{\lambda_{2} t} V_{2}$, where c_{1} and c_{2} are constants.
2. $\lambda=\lambda_{1}=\lambda_{2}$.
(a) V_{1} and V_{2} are linearly independent. The general solution is $X(t)=e^{\lambda t} V$, where V is any vector in \Re^{2}.
(b) V_{1} and V_{2} are not linearly independent. Let V be V_{1} or V_{2} and let U be a solution of the matrix equation $(A-\lambda I) U=V$. The general solution is $X(t)=$ $c_{1} e^{\lambda t} V+c_{2} e^{\lambda t}(t V+U)$, where c_{1} and c_{2} are constants.
3. λ_{1} and λ_{2} are complex-valued: $\lambda_{1}, \lambda_{2}=\alpha \pm i \beta$ with $\beta \neq 0$. The general solution is $X(t)=c_{1} \operatorname{Re}\left(e^{\lambda_{1} t} V_{1}\right)+c_{2} \operatorname{Im}\left(e^{\lambda_{1} t} V_{1}\right)$, where $\operatorname{Re}(*)$ and $\operatorname{Im}(*)$ are the real and imaginary parts of $*$, respectively, and c_{1} and c_{2} are constants.
